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(e-mail: lupia@mppmu.mpg.de, wwo@mppmu.mpg.de)

Received: 14 April 1997

Abstract. Charged particle energy spectra in e+e− annihilation are compared with the analytical predic-
tions from the QCD evolution equation in the Modified Leading Log Approximation. With the nonper-
turbative initial condition shifted down to threshold as suggested by the Local Parton Hadron Duality
picture a good description of the data from the lowest up to highest available energies results. The two
essential parameters in this approach are determined from a moment analysis. The sensitivity of the fit to
the running of αs and to the number of active flavours (including a light gluino) is demonstrated. For very
high energies the theory predicts a scaling behaviour in certain rescaled variables (“ζ-scaling”). The data
show an approximate behaviour of this type in the present energy range and come close to the predicted
asymptotic scaling function for the small particle energies.

1 Introduction

The perturbative QCD describes well the properties of
hard processes. The problem of the soft limit of the per-
turbation theory and the transition to the hadronic final
state, however, is still not solved at a fundamental level.
The studies of the global properties of the hadronic final
states gave support to the idea that the colour confine-
ment mechanism should be rather soft [1, 2]. Meanwhile,
the close similarity between hadronic and partonic final
states has been found for a large variety of observables,
provided the parton cascade in the perturbative calcula-
tion is evolved down to rather low virtualities of the order
of a few hundred MeV; this phenomenon is called “Local
Parton Hadron Duality” (LPHD) [3] (for a recent review,
see [4]).

An interesting prediction concerns the momentum
spectrum of the particles in a jet at very high energies,
namely the approximately Gaussian distribution in the
variable ξ = ln(Pjet/phadron), the so-called “hump backed
plateau” [5–7], with a suppression of low momentum par-
ticles following from the soft gluon interference [8, 9].

Within the LPHD picture, not only the very high en-
ergy behaviour of the spectrum is considered. Rather, one
starts from the initial condition near threshold for the par-
ton cascade where only one parton is present and derives
the distribution at higher energies using the appropriate
QCD evolution equation. In this case – apart from the
overall normalization – the theory has only two essen-
tial parameters, the QCD scale Λ in the running coupling
(at the one loop level) and a cut-off Q0 in the transverse
momentum of the gluon emission. In the Double Loga-
rithmic Approximation (DLA) one takes into account the
leading contributions from the collinear and soft singular-
ities which dominate at very high energies and determine

the asymptotic behaviour of the observables. At present
energies the next-to-leading corrections of relative order√

αs are important and are fully taken into account in the
Modified Leading Logarithmic Approximation (MLLA).
An explicit analytical expression for the particle energy
distribution is found in this approximation for the special
case Q0 = Λ, the so-called limiting spectrum [3]. Remark-
ably, the experimental momentum spectra in the PETRA
[10] and LEP [11] energy range gave support to the pertur-
bative predictions [3], and this success has been continued
recently to the higher energies at LEP-1.5 ([12–14] and
[15]) and the TEVATRON [16].

The energy evolution of the spectrum and its connec-
tion to the initial condition at threshold is most conve-
niently studied using the moment representation of the
spectrum. Recently, the first such moment analysis, based
on the analytical results [17], has been performed over the
full cms energy range available in e+e− annihilation [18].
There are a number of advantages of the moment analy-
sis over the analysis of the spectrum itself: (a) there are
analytical formulae which keep the two essential param-
eters of the theory Q0 and Λ independent [17], whereas
explicit formulae for the spectrum are only available for
the limiting case Q0 = Λ; (b) the moments evolve with
energy independently of each other. Their absolute size
is determined by the initial condition at the threshold of
the process; (c) the moments of order q ≥ 1 are inde-
pendent of the overall normalization and depend only on
the two essential parameters of the LPHD approach; (d)
the difference between the theory with running coupling
and an artificial theory with fixed coupling can be stud-
ied directly and (e) the flavour thresholds can be included
in the theoretical calculations. As the calculations of the
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moments include the soft part of the spectrum, the mass
effects have to be taken into account.

Having studied the behaviour of the spectrum towards
low energies it is also interesting to study the limiting
behaviour of the spectrum for very high energies as the
theories typically predict simple asymptotic expressions
or a characteristic scaling behaviour. Then one can inves-
tigate to what extent this behaviour appears already at
available energies. The asymptotic behaviour of the QCD
jet is obtained in the DLA. There is indeed a finite scaling
limit in certain rescaled variables and the scaling function
can be calculated [20].

The purpose of this paper is twofold. First, we present
more details of our previous moment analysis [18] (see also
[19]) as well as further results concerning all points (a) –
(e) above. Secondly, we give the description of the shape of
the spectrum and discuss the approach to the asymptotic
limit in the appropriate scaling variables.

2 Theoretical description of particle spectra

2.1 Evolution equations

The multiparticle properties of a QCD jet is conveniently
described by the generating functional Z(κ, Q0, {u(k)}).
The arguments are the hardness scale κ of the jet, which
is defined in terms of jet momentum P and opening angle
Θ by

κ = 2P sin
Θ

2
≈ PΘ (1)

where the approximation holds for small angles; Q0 is the
lower cut-off in the transverse momentum of the emitted
parton

k⊥ ≥ Q0. (2)

The inclusive densities can be obtained by functional dif-
ferentiation of Z over the probing functions u(k) refer-
ing to parton momentum k. Our analysis is based on the
evolution equation for the gluon jet as discussed in [17].
We rederive here the basic equations for the energy spec-
trum whereby we start from the evolution equation of the
generating functional and show the various steps of the
approximations.

The evolution of the generating functional with the
hardness scale κ is given by the “Master Equation” [2, 21]

d

d ln κ
ZA(κ, Q0) =

1
2

∑
B,C

∫ 1

0
dz

αs(k2
⊥)

2π
ΦB

A(z)

× [ZB(zκ, Q0) ZC((1 − z)κ, Q0) − ZA(κ, Q0)] . (3)

This equation describes the evolution of the jet by the
splitting of the primary parton A into partons B and C at
reduced scales zκ and (1−z)κ; ΦB

A(z) denote the DGLAP
splitting functions. The integral over the secondary energy
fraction z has to respect the limits (2) for the transverse
momentum k⊥ = z(1 − z)κ.

The “Master Equation” (3) yields results complete
within the MLLA at high energies. Furthermore, the en-
ergy conservation constraints are taken into account. Be-
cause of (2) the evolution starts at κ = Q0. Then the
initial condition for solving this system of equations reads

ZA(κ, Q0; {u})|κ = Q0 = uA(k = P ) (4)

which means that there is only one parton in the cascade
at threshold.

The solution of the evolution equation (3) together
with the boundary condition (4) yields perturbative ex-
pansions in αs in all orders, which for many observables
can be resummed and exponentiate at high energies. The
MLLA takes into full account the leading and next-to-
leading contributions in the expansion of

√
αs in the ex-

ponent at high energies.
To this accuracy one can actually neglect the energy

recoil and replace the 1 − z by 1 in the arguments of Z
and furthermore neglect the z-dependence of Z and of
αs(k⊥(z)) in the regular z-integrals. With these simplifi-
cations one obtains a simplified form of (3), the MLLA
master equation [21].

The evolution equation for the single inclusive density
in the secondary parton energy k is obtained from Z by
functional differentiation

D(k, κ, Q0) =
δ

δu(k)
Z(κ, Q0, {u})|u=1. (5)

After differentiation (5) of the MLLA master equation [21]
we obtain the evolution of the parton densities in quark
and gluon jets

d

d lnκ
Dg(k, κ) =

∫ 1

x

dz

z
γ2
0(zκ)Dg(k, κ) + γ2

0(κ)

×
(

−11
12

Dg(k, κ) +
TR nf

3NC
[2Dq(k, κ) − Dg(k, κ)]

)
d

d lnκ
Dq(k, κ) =

CF

NC

×
(∫ 1

x

dz

z
γ2
0(zκ)Dg(k, κ) − 3

4
γ2
0(κ)Dg(k, κ)

)
(6)

Here x = k/P , nf and NC denote the number of flavours
and colours respectively, CF = N2

C−1
2NC

and TR = 1
2 . The

anomalous multiplicity dimension γ0 is given in one-loop
approximation by

γ2
0(k⊥) =

2NCαs(k⊥)
π

=
4NC

b ln(k⊥/Λ)
,

b =
11
3

NC − 2
3
nf . (7)

The initial conditions for these evolution equations follow
from (4)

DA(k, κ)|κ=Q0 = δ(k − PA) , A = q, g (8)
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It is convenient to write these equations in logarithmic
variables, namely

Y = ln
κ

Q0
≈ ln

PΘ

Q0
, ξ = ln

1
x

= ln
P

k
, λ = ln

Q0

Λ
,

ξ′ = ln
zP

k
= ξ + ln z, y′ = ln

zPΘ

Q0
= Y + ln z. (9)

Then, after redefining D(k, P, Θ) → D(ξ, Y ) and
D(k, zP, Θ) → D(ξ′, y′) we obtain after integration of (6)
with (8)1

Dg(ξ, Y ) = δ(ξ)

+
∫ ξ

0
dξ′
∫ Y −ξ

0
dy′γ2

0(y′ + ξ′)Dg(ξ′, y′ + ξ′)

+
∫ Y

ξ

dyγ2
0(y)

(
−11

12
Dg(ξ, y)

+
TR nf

3NC
[2Dq(ξ, y) − Dg(ξ, y)]

)
Dq(ξ, Y ) = δ(ξ)

+
CF

NC

(∫ ξ

0
dξ′
∫ Y −ξ

0
dy′γ2

0(y′ + ξ′)Dg(ξ′, y′ + ξ′)

−3
4

∫ Y

ξ

dyγ2
0(y)Dg(ξ, y)

)
. (10)

The double integral terms in these equations originate
from the singular parts of the splitting functions Φ(z) ∼
1/z and represent the leading double logarithmic terms of
the DLA, the single integrals include the MLLA correc-
tions from the finite parts of the splitting functions within
the required approximation. In the DLA the spectra in
quark and gluon jets are related by

Dq(ξ, Y ) − δ(ξ) =
CF

NC
(Dg(ξ, Y ) − δ(ξ)) (11)

Replacing Dq by its leading order contribution CF

NC
Dg in

the nonleading term of (10) for Dg, we obtain the integral
evolution equation for Dg

Dg(ξ, Y ) = δ(ξ)

+
∫ ξ

0
dξ′
∫ Y −ξ

0
dy′γ2

0(y′ + ξ′)Dg(ξ′, y′ + ξ′)

− a

4NC

∫ Y

ξ

dyγ2
0(y)Dg(ξ, y) (12)

with a = 11
3 NC + 2nf

3N2
C

. The corresponding differential
equation reads(

∂

∂ξ
+

∂

∂Y

)
∂Dg(ξ, Y, λ)

dY
− γ2

0(Y )Dg(ξ, Y, λ)

= −a

(
∂

∂ξ
+

∂

∂Y

)(
γ2
0(Y )
4NC

Dg(ξ, Y, λ)
)

. (13)

1 We use here the same notation for both densities D(k) =
dn/dk and D(ξ) = dn/dξ = kdn/dk

For a = 0 it corresponds to the DLA. In order to solve this
equation one can introduce the Laplace transform (D ≡
Dg)

D(ξ, Y ) =
∫ τ+i∞

τ−i∞

dω

2πi
eωξDω(Y ), (14)

where the integral runs parallel to the imaginary axis to
the right of all singularities of the integrand in the complex
ω-plane. Then Dω(Y ) fulfils the ordinary linear differential
equation(

ω +
d

dY

)
d

dY
Dω(Y, λ) − γ2

0(Y )Dω(Y, λ)

= −a

(
ω +

d

dY

)
γ2
0(Y )
4NC

Dω(Y, λ) . (15)

This is the basic equation used in [17] to derive the parton
distributions and their moments for gluon jets. For quark
jets the high energy approximation Dq = CF

NC
Dg is taken.

The differential equation (13) has also been analyzed in
[18].

One approach towards a solution of this equation is
based on the anomalous dimension ansatz

Dω(Y, λ) = Dω(Y0, λ) exp

(∫ Y

Y0

dyγω[αs(y + λ)]

)
(16)

which yields a differential equation for γω with two solu-
tions, one of which dominating at high energies. Alterna-
tively, one can find the solution of (15) directly in terms
of hypergeometric functions [17, 2].

2.2 Moments of parton distributions

There are various advantages of studying the moments of
the parton distributions as discussed in the Introduction.
Analytical predictions for QCD jets have been presented
in [7, 17].

2.2.1 Definitions and evolution equation

The unnormalized moments Mq of the ξ-distribution are
defined by

Mq(Y, λ) =
∫ Y

0
dξξqD(ξ, Y, λ) (17)

with M0 equal to the average parton multiplicity N . They
are closely related to the Laplace transform

Dω(Y, λ) =
∫ Y

0
dξe−ξω D(ξ, Y, λ), (18)

by

Mq = (−1)q ∂q

∂ωq
Dω(Y, λ)|ω=0 . (19)
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The moments < ξq > of the ξ-distribution are then defined
by

< ξq(Y, λ) >=
Mq

N . (20)

One also introduces the cumulant moments Kq(Y, λ);
the moments of lowest order in q are given by

K1 =< ξ >≡ ξ̄, K2 = σ2 =< (ξ − ξ̄)2 >,

K3 =< (ξ − ξ̄)3 >, K4 =< (ξ − ξ̄)4 > −3σ4.
(21)

The reduced cumulants are defined by kq ≡ Kq/σq, in
particular the skewness s = k3 and the kurtosis k = k4.
The cumulants Kq of general order q can be derived from
the expansion:

lnDω(Y, λ) =
∞∑

q=0

Kq(Y, λ)
(−ω)q

q!
(22)

and therefore

Kq(Y, λ) =
(

− ∂

∂ω

)q

lnDω(Y, λ)
∣∣∣∣
ω=0

. (23)

At high energies one term of the type (16) dominates and
one finds

Kq(Y, λ) = Kq(0, λ)

+
∫ Y

0
dy

(
− ∂

∂ω

)q

γω[αs(y + λ, nf )]
∣∣∣∣
ω=0

(24)

where the evolution starts at Y = 0 according to the
LPHD picture.

The moments can be obtained via (19) from the evolu-
tion equation for Dω with the appropriate boundary con-
ditions at threshold. These are obtained from the “Master
Equation” (3) with (4) and (5) as

N (0) = 1, N ′
(0) = 0

< ξq(0) >= 0 < ξq ′(0) >= 0 for q ≥ 1.
(25)

On the other hand, the boundary conditions implied by
(10) and (12) are different in case of the multiplicity N
because of the approximations involved in this integral
equation, whereas they remain the same for the higher
moments. For λ > 0 we find

N (0) = 1 , N ′
(0) = −B

λ
< 0 . (26)

The corresponding result is also obtained for Dω in [17].
This yields a minimum of the multiplicity above threshold
with an unphysical value N (Ym) < 1. In case of the lim-
iting spectrum with λ = 0 both the position in Y and the
value of the minimum of the multiplicity N tends to zero
and one obtains the boundary conditions N (0) = 0 and
N ′

(0) > 0 [17]. These problems can be traced back to the
approximations in the second integrals in (10) and (12):
the correct limits (25) would be obtained, for example,
using the modifications (ε-terms) proposed in [21].

It should also be noted that the limit λ → 0 is only pos-
sible because of these approximations. Otherwise, whereas
the energy dependence of the multiplicity N ∼
exp(c

√
Y + λ) has a smooth limit for λ → 0, the absolute

normalization (the prefactor) would diverge for λ → 0.
This can be seen, for example, in the DLA from (52) with
B = 0. It will be interesting to study the effect of these
approximations in more detail. The subsequent analysis is
based on the approximate (12) and (15) with the corre-
sponding boundary conditions.

2.2.2 Moments for running coupling αs

The results obtained from the full solution of (15) can be
written for arbitrary parameters Q0 and Λ as:

< ξq >=
1
N

q∑
k=0

(
d

k

)
(N1L

(q)
k + N2R

(q)
k ) (27)

where N1, N2, L
(q)
k and R

(q)
k are known functions of a,

b, Y + λ and λ whose explicit expression depends on the
order q [17] (see Appendix A1). For the special case of
the limiting spectrum, where the two parameters Q0 and
Λ coincide (i.e. λ = 0), the expressions simplify and all
moments can be expressed in terms of the parameter B ≡
a/b and the variable z ≡ √

16NcY/b. The general result
for the q-order moments is then the following [17]:

< ξq >

Y q
= P

(q)
0 (B + 1, B + 2, z)

+
2
z

IB+2(z)
IB+1(z)

P
(q)
1 (B + 1, B + 2, z) (28)

where P
(q)
0 and P

(q)
1 are polynomials of order 2(q−1). Ex-

panding the Bessel functions and P
(q)
i , one obtains a series

in 1/
√

Y . The leading and next-to-leading order results in
this expansion (see also [7]) determine the high energy be-
haviour; the remaining part of the series however is still
numerically sizeable at LEP energies (10% contribution
to ξ̄ and σ2) and increases towards lower energies. We
therefore included the full result (28), also for P

(q)
i (for

the explicit expressions, see Appendix A2). The average
multiplicity of partons is given in this approximation by:

N LS = Γ (B)
(z

2

)1−B

IB+1(z). (29)

2.2.3 Moments for fixed coupling αs

In this case the differential equations (13) and (15) can be
solved exactly [18]. For Dω one finds

D(ω, Y ) =
(

ω/2 + η

ω̃
sinh(ω̃Y ) + cosh(ω̃Y )

)
e−(ω/2+η)Y

(30)
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where ω̃ =
√

(ω/2 − η)2 + γ2
0 . Differentiation (19) yields

the moments in the form

N fix =
[
cosh (γ̄0Y ) +

η

γ̄0
sinh (γ̄0Y )

]
exp (−ηY ) (31)

< ξq
fix > = [Aq cosh (γ̄0Y ) + Bq sinh (γ̄0Y )]

×exp (−ηY )
N fix

(32)

γ̄0 ≡
√

γ2
0 + η2 η =

aγ2
0

8NC
=

aαs

4π

The coefficients Aq, Bq are polynomials of order q in Y ,
given for q ≤ 4 in the Appendix A3. For η = 0, one obtains
back the DLA results, especially N fix = cosh(γ0Y ).

These results are obtained using the original boundary
conditions, (25). As pointed out above, from the MLLA
equation (12) the boundary conditions (26) are obtained.
We have also studied the results following from these other
boundary conditions: in this case the moments would be
shifted towards larger Y at most by 1 unit and the overall
description of the data would become worse.

At high energies the results (32) greatly simplify and
the moments read:

< ξq
fix >' Aq + Bq

1 + η/γ̄0
(33)

i.e., they behave like < ξq
fix >∼ Y q. For the cumulant

moments the leading terms cancel and

Kq,fix ∼ Y . (34)

This can be easily seen by noting that at high energies
(30) can be approximately written as

D(ω, Y ) ' exp [γωY ] with γω = −(
ω

2
+ η) + ω̃ (35)

Since the coupling in this case is frozen, the anomalous
dimension γω does not depend on y, the integral in (24)
becomes trivial and (34) follows directly.

3 Moment analysis

3.1 Determination of moments and mass effects

In order to determine the moments one has to integrate
the ξ-spectra over the full range. Here one faces a prob-
lem for small momenta because of mass effects as already
discussed in [18]. In the theoretical calculation the par-
tons are treated as massless with k⊥ > Q0, therefore
ξ ≡ ξE = ln P

E ≤ Y = ln P
Q0

, i.e. ξ has an upper limit.
On the other hand, the experimental data usually refer to
the distribution in particle momentum p or ξp = ln P

p , and
ξp is not limited from above.

For identified particles with known masses one can eas-
ily construct the energy distributions, but there is no reli-
able prediction yet for the mass dependence of the identi-
fied particle spectra within the theoretical framework con-
sidered here. Therefore we restrict ourselves to charged
particles and we give them a common effective mass mh.
If this mass is taken equal to the cut-off Q0, then for par-
tons and charged particles there is the same upper limit
ξE = Y . The hadron spectra in the jet from the primary
parton A are then calculated from the parton distribution
according to the LPHD hypothesis from [22, 18]

Eh
dnA(ξE)

dph
= KhEp

dnA(ξE)
dpp

≡ KhDg
A(ξE , Y ) (36)

with Eh =
√

p2
h + Q2

0 and Kh an unknown normalization
constant to be fitted by the data. Equation (36) leads to
the correct relation for p ∼ E � Q0, independent of the
mass; for small momenta it yields a finite value for the
invariant density E dn

d3p in agreement with the data [18]
(see also the discussion on this point in [23]). As Q0 has the
meaning of a transverse momentum cut-off for partons, it
could be thought of for hadrons as an effective transverse
mass mT =

√
m2 + p2

⊥, which is larger than the particle
mass itself.

The effect of introducing an effective particle mass on
the shape of the spectrum is shown in Fig. 1. Here the
inclusive charged particle ξ-spectra with different mass
assignments, namely Q0 = 0, Q0 = mπ and Q0 = 270
MeV, are shown. The latter value is suggested from the
moment analysis [18], see below. The upper limits of ξ
corresponding to the above effective masses Q0 are also
shown in the figures. As can be seen from these figures,
the rescaling procedure is relevant in the soft region only,
where the kinematical boundary becomes important. The
effect is stronger at the lower cms energy of

√
s = 14 GeV

[10] as compared to
√

s = 91 GeV [11]. In the latter case
the separation of curves in the measured range is hardly
visible.

The moments < ξq > are determined from the spec-
tra Edn/dp vs. ξE after appropriate transformation of the
measured xp spectra and therefore depend on the cho-
sen effective mass mh = Q0. For the unmeasured interval
near ξE ' Y (small momenta), we added an extra-point
with coordinates {(Y + ξlast)/2, D(ξlast)/2 ± σD(ξlast)}
to linearly interpolate between the last measured point of
coordinates {ξlast, D(ξlast)±σD(ξlast)} and the limit {Y ,
0} imposed by kinematics. The errors of the moments are
determined from the errors of D(ξi) and the errors of the
central values of ξE in each bin, taken as half the bin-size.

Correspondingly, we obtain the multiplicity N E as in-
tegral over ξE of the full spectrum Edn/dp. As expected
from Fig. 1, its difference to the usual particle multiplicity
N ch decreases with rising cms energy, from 30% at

√
s =

3 GeV to 10% at LEP energy. The MARK I data point
at

√
s = 4.03 GeV shows an anomalous decrease of up to

50%, which may be partly related to charm thresholds ef-
fects. The result of this moment determination using the
effective mass Q0=270 MeV is presented in Table 1; this
value of Q0 results from the fit discussed below.
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Fig. 1. a Comparison of charged
particle inclusive single particle
spectra, Edn/dp vs. ξ, at

√
s =

14 GeV [10] for different mass
assigment: the inclusive momen-
tum spectrum pdn/dp vs. ξp (di-
amonds) and the rescaled spectra
Edn/dp vs. ξE , with E2 = p2 +Q2

0,
Q0 = 138 MeV (triangles) and Q0

= 270 MeV (squares). Also shown
are the upper limits of ξE given by
Y = ln(

√
s/2Q0); b: same as in a,

but at
√

s = 91 GeV [11]

3.2 QCD description of moments for running αs

3.2.1 Determination of the parameters Q0 and Λ

The study of cumulant moments of the charged particle
energy spectra allows for the first time the unconstrained
determination of the two essential parameters which enter
the theoretical predictions, namely Q0 and Λ (or λ) for the
running αs model and Q0 and γ0 for the fixed αs model.
Let us start with the running αs case with results shown
in Fig. 2, the analysis of the fixed αs results, shown in
Fig. 3, runs parallel and will be discussed below.

Figure 2 shows the mean multiplicity, the average value
ξ̄E and the dispersion σ2 extracted from the experimental
data [10–14, 24–29] as a function of the cms energy for
three different values of the parameter Q0; the theoretical
predictions for the cumulant moments using the given Q0
still depend on Λ (or λ). The predictions are calculated for
the number of flavours nf = 3. For the particle multiplicity
we use

N E = c1
4
9
2N part + c2 (37)

with arbitrary parameters ci and parton multiplicity N part

from (29) (the factor 4/9 is for the quark jet and 2 is for the
two hemispheres). The two normalization parameters are
determined to let the curve go through the lowest and the
highest energy data points. The parameter c1 corresponds
to the Kh factor in (36), whereas the additional parameter
c2 has been introduced to allow for a finite multiplicity at
threshold as in (25). It is important to note that the higher
moments (q ≥ 1) describe the shape and do not depend
on the normalization, so they are unaffected both by the
systematic experimental uncertainties of the overall nor-
malization and by the theoretical uncertainties associated
with the Kh factor.

The mean multiplicity data in Fig. 2, for each chosen
Q0, can be properly described by the theoretical predic-
tions for any value of λ in the range 0 ≤ λ ≤ 4. Let
us stress that the theoretical predictions at parton level
strongly depend on λ, but one can obtain in all cases good
fits of the experimental data by adjusting the free parame-
ters ci in (37). Therefore the mean multiplicity data alone
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Fig. 2. Dependence on Y of the three lowest order moments
of the inclusive energy spectrum. The data of the mean mul-
tiplicity N E , average value ξE and dispersion σ2 of inclusive
energy spectra for Q0 = 138 MeV (triangles), Q0 = 270 MeV
(diamonds) and Q0 = 350 MeV (squares) are compared with
theoretical predictions of MLLA with running coupling with
λ = 0 (limiting spectrum) (solid line), λ = 0.5 (dashed line),
λ = 4 (dotted line). The theoretical predictions for the mean
multiplicity are computed from (37) and (29)
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Table 1. The average multiplicity N E , the average value ξ̄E , the dispersion σ2, the skewness
s and the kurtosis k of charged particle inclusive energy spectra Edn/dp vs. ξE for Q0 = 270
MeV at various cms energies

√
s. In brackets theoretical predictions of the limiting spectrum

of MLLA with running αs; the second entry in the average multiplicity column contains the
results of (37) with (29); the first one the results with c2 = 0. Errors on the average multiplicity
data points include both statistical and systematic errors. Results at LEP and LEP-1.5 cms
energies from [15]

Exp. N E ξ̄E σ2 s k
√

s (GeV)

MARK I[24] 3.01±0.3 1.02±0.02 0.14±0.01 -0.50±0.17 -0.46±0.13

3.0 (2.10,input) (1.14) (0.13) (-0.50) (-0.50)

MARK I[24] 3.66±0.37 1.27±0.02 0.17±0.01 -0.58±0.08 -0.12±0.20

4.03 (2.73,3.61) (1.33) (0.18) (-0.48) (-0.51)

MARK II[25] ± 1.47±0.04 0.19±0.01 -0.57±0.08 -0.20±0.17

5.2 (3.36,4.21) (1.49) (0.22) (-0.47) (-0.52)

MARK I[24] 4.63±0.46 1.61±0.03 0.26±0.01 -0.56±0.08 -0.29±0.18

7.4 (4.11,4.92) (1.66) (0.28) (-0.45) (-0.52)

TASSO[10] 7.64±0.59 2.10±0.04 0.40±0.01 -0.47±0.07 -0.42±0.17

14. (6.73,7.40) (2.12) (0.44) (-0.42) (-0.52)

TASSO[10] 9.65±0.68 2.38±0.04 0.54±0.02 -0.47±0.07 -0.44±0.18

22. (8.87,9.44) (2.40) (0.56) (-0.40) (-0.52)

TASSO[10] 12.21±0.86 2.67±0.03 0.68±0.01 -0.44±0.03 -0.51±0.09

35. (11.51,11.95) (2.69) (0.70) (-0.38) (-0.52)

TASSO[10] 13.38±1.05 2.80±0.03 0.75±0.01 -0.40±0.04 -0.59±0.09

44. (12.96,13.33) (2.82) (0.76) (-0.37) (-0.52)

TOPAZ[26] 14.54±0.43 3.01±0.03 0.80±0.02 -0.43±0.05 -0.49±0.15

58. (15.09,15.34) (3.00) (0.85) (-0.36) (-0.52)

ALEPH[27] 18.81±1.05 3.24±0.04 0.99±0.05 -0.39±0.10 -0.59±0.32

DELPHI[28] 19.17±1.00 3.32±0.02 1.03±0.01 -0.40±0.02 -0.59±0.07

L3[29] 18.74±1.09 3.28±0.06 0.99±0.06 -0.35±0.13 -0.65±0.40

OPAL[11] 18.95±1.00 3.29±0.01 0.99±0.01 -0.36±0.03 -0.59±0.09

LEP-1 (avg) 18.93±0.52 3.29±0.01 1.01±0.02 -0.39±0.02 -0.59±0.05

DELPHI–γ [13] 19.20±0.26 3.33±0.04 0.99±0.03 -0.46±0.05 -0.44±0.18

91.2 (input,input) (3.27) (1.00) (-0.35) (-0.52)

ALEPH [12] 22.04±0.47 3.52±0.06 1.19±0.04 -0.37±0.07 -0.62±0.26

DELPHI [13] 22.27±0.58 3.47±0.05 1.13±0.05 -0.40±0.08 -0.49±0.29

OPAL [14] 21.50±0.57 3.51±0.07 1.19±0.04 -0.35±0.07 -0.63±0.25

LEP-1.5 (avg) 21.95±0.31 3.495±0.034 1.185±0.025 -0.365±0.042 -0.59±0.15

133 (22.6,22.5) (3.50) (1.14) (-0.34) (-0.52)

do not determine the parameter λ. Looking now at the first
moment ξ̄, we observe that for each chosen Q0 a suitable
value of λ can be found which provides a good description
of the data. In order to fix both parameters, one has then
to include the dispersion σ2. As can be seen from the fig-
ure, a lowering of Q0 shifts both the ξ̄E and the σ2 data

downwards. On the other hand, an increase of λ yields
lower values for ξ̄E but larger values for σ2, as one can see
by inspection of the first two terms in the expansion of ξ̄E

and σ2 in λ [18].
The parameters Q0 and λ are determined from a χ2-

minimization. To compute the χ2 we have used the first
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Fig. 3. Same data as in Fig. 2 for different Q0 parameters;
comparison with theoretical predictions of MLLA with fixed
coupling with γ0 = 0.64 (solid line), γ0 = 0.4 (dashed line),
γ0 = 1 (dotted line). The theoretical predictions for the mean
multiplicity are computed from (37) and (31)

4 moments (q ≥ 1) of the inclusive energy spectra for
charged particles, but not the mean multiplicity because
of its larger systematic errors and the need of two more
normalization parameters for its theoretical description.
The minimum of χ2 is obtained for the limiting spectrum
(λ → 0), and the parameters are estimated as:

Q0 ' Λ ' 270 MeV. (38)

The minimum value of the χ2/d.o.f., neglecting the
correlations among the cumulants of different order, is
found to be 1.8 (with about 70 d.o.f.). So we do not ob-
tain a “perfect” fit of the data, but considering the small
errors of the lowest order moments and the small num-
ber of parameters, a very satisfactory description of all
moments over a large energy range is obtained. In view
of the systematic uncertainties of the fit we estimate the
errors of the parameters from the limiting case in which
the theoretical curves miss all data points by about one
standard deviation. This yields the conservative estimate

∆Q0 ' ∆Λ ' 20 MeV. (39)

Alternatively, this result can also be transformed into a
limit on λ = ln(Q0/Λ)

λ <∼ 0.1. (40)

Our result (38) is slightly larger than the ∼ 250 MeV
obtained by the OPAL Collaboration [11] from a fit of the
measured ξ distribution to the limiting spectrum adjusting
only one parameter. The small difference results from the
inclusion of lower energy data in our fit.

3.2.2 Discussion of the fits

The cumulant moments up to order q = 4 together with
the corresponding predictions for the limiting spectrum
with Q0 = 270 MeV and nf = 3 are shown in Fig. 4 by
the solid lines. The values of the moments and the cor-
responding theoretical predictions are given also in Table
1. A very satisfactory description is obtained in the full
cms energy range available; small deviations in the first
moment at very low energies are visible. This may signal
some limitations of the approximations involved, in partic-
ular, the simplified relation between quark- and gluon-jets,
in this region.

It should be noted that the moments with q ≥ 1 are
determined by two parameters only which actually almost
coincide. This should be contrasted with the more conven-
tional applications of perturbative QCD to the particle or
parton spectra. There one starts at a finite energy Y0 with
a nonperturbative input distribution which in general re-
quires a set of unknown parameters and then evolves this
distribution to higher energies according to the predictions
of perturbative QCD. In terms of moments this would re-
quire one adjustable value Kq(Y0) for each moment at the
initial energy Y0.

In the application of LPHD one assumes the validity of
the perturbative formulae for the moments down to small
energy scales of order few hundred MeV, actually down to
the threshold energy Q0, where the distribution function
is known to be simply the δ-function (10). In this limit all
the higher moments are determined to be zero. Therefore
the compact description with only two parameters is a
direct consequence of the assumption that the theoretical
description can be continued down to these low energies. A
free adjustment of the moments at higher energy Y0 with
a vertical shift of the curves in Fig. 4 would not improve
the predictions essentially; the limiting spectrum with the
absolute normalization at threshold gives indeed the best
results. It should be noted that the previous applications
of the limiting spectrum to fit the ξ-spectra (for example
[3, 11]) rely on the same assumption that the QCD evo-
lution can be continued down to the low scales Q0 of few
hundreds MeV where the initial condition is introduced.

3.2.3 Flavour dependence

The theoretical predictions shown so far were obtained
with 3 active flavours. A possible source of uncertainty in
the theoretical formulae is the number of active flavours
to be used (see also [18, 15]). In the predictions for cumu-
lants (24) the number of flavours enters essentially through
the running coupling αs(y, nf ). We neglect in the present



S. Lupia, W. Ochs: Low and high energy limits of particle spectra in QCD jets 315

ln �NE

��E

�2

- K3

- K4

nf = 3

nf = 3,4,5

nf = 3,4,5+gluino
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0

1

2

3

4

5

0

0.5

1

1.5

2

0

0.2

0.4

0.6

0.8

0

0.5

1

1.5

2

0 1 2 3 4 5 6 7 8

Y

Fig. 4. The average multiplicity N E and the first four cumu-
lants of charged particle energy spectra Edn/dp vs. ξE , are
shown as a function of Y = ln(

√
s/2Q0) for Q0 = 270 MeV at

various cms energies (see Table 1). The curves show the pre-
dictions of the limiting spectrum with Q0 = 270 MeV with 3
active flavours (solid line), the number of flavours nf variable
with the heavy quark thresholds at

√
s/2 = 4mQ (dashed line)

and the inclusion of a light gluino with mass of 1 GeV (dotted
line). In all cases, the mean multiplicity is computed from (37)
and (29)

discussion the additional explicit dependence at the per-
cent level, which comes in through the parameter a at the
next-to-leading order of the MLLA.

The moments evolve at low energy with 3 active fla-
vours and with 4 and 5 flavours after passing the respec-
tive thresholds. The simplest approach would be to put
the thresholds at the heavy quark masses, i.e., to increase
nf by one at

√
s

2 = mQ where
√

s = 2P . However, let us
recall that the argument of αs is the transverse momen-
tum k⊥ and kinematics forces k⊥ ≤ 1

4

√
s

2 . This suggests
moving the thresholds to

√
s

2 = 4mQ (or towards even
larger values, see for example [30]).

In Fig. 4 we show the predictions from the limiting
spectrum with the inclusion of heavy flavours at the cor-
responding thresholds

√
s

2 = 4mQ (dashed lines). Above a
heavy quark threshold the moments evolve according to
(24) with the respective number of active flavours nf and
match continuously to the moments with nf − 1 active
flavours below the threshold, in complete analogy to the
inverse coupling constant 1/αs [31]. We then write for the
cumulants

Kq(
√

s

2
) = K

(nf )
q (

√
s

2
)

−
nf∑
i=4

(
K(i)

q (4mf ) − K(i−1)
q (4mf )

)

×Θ(
√

s

2
− 4mf ) (41)

Here K
(i)
q (Pjet) refers to the moment calculated with i

flavours from threshold Q0 up to jet momentum Pjet. The
comparison of the upper two curves in Fig. 4 shows that
the inclusion of the heavy quark thresholds does not mod-
ify dramatically the behaviour of the moments. Therefore,
a reasonable approximation of the experimental data in
the present energy range is obtained by taking into ac-
count only three active flavours throughout the full en-
ergy range. This behaviour of the theoretical predictions
can be easily understood from the representation of the
moments (24) in terms of the anomalous dimension. Just
above threshold the contribution of the new flavour to the
y-integral is negligible. Most primary gluons are still emit-
ted at a smaller scale below the new flavour threshold. On
the other hand, an approximation with five flavours in the
full energy range would be a complete failure.

We have neglected here the differences in the light and
heavy quark fragmentation. Whereas such effects occur in
the fragmentation region, they are expected to be small
in our application, as the soft gluon radiation is universal.

3.2.4 The effect of a light gluino

By exploiting the flavour dependence one can also extract
new information on the possible presence of additional
light particles. There has been considerable interest in the
last years in the question whether there is a supersymmet-
ric gluino with a small mass. In a recent summary [32] the
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gluinos in the mass range 1 1
2–3 1

2 GeV are considered as
absolutely excluded, whereas lighter gluinos are allowed,
except for certain ranges of lifetime. In a recent study [33]
of jet rates and jet angular distributions in the reaction
e+e− → 4 jets, such a possibility has been severely re-
stricted, however.

A sensitive probe of the presence of light gluinos is
the running of αs [34], as each gluino changes the number
of active flavours by 3. Here we show the sensitivity of
the moments to the presence of a light gluino with mass
around 1 GeV. It is assumed that the effect of the light
gluino comes in only through the running coupling and
not through its effect on the final state structure. This can
be justified by noting that gluino pair production – like
quark pair production – does not contribute to the cascade
evolution in leading double log order. In Fig. 4 the lowest
curve represents the predictions for the moments assuming
the presence of one light gluino with 1 GeV mass, i.e., 3
additional flavours at

√
s

2 ≥ 4 GeV.
The multiplicity N can be fitted again by readjusting

the normalization parameters in agreement with previous
findings [35]. On the other hand, the predictions for the
higher moments, especially with q = 2 and q = 3, are far
off the data. The energy dependence of the moments in
presence of the light gluino is weaker in the same way as
the running of αs is weaker, as it is expected from (24).
We conclude that the existence of a light gluino is not
supported by our analysis. However, it seems premature
to definitely exclude such a particle at present from this
study. There are some simplifications in the present anal-
ysis and our QCD fit without gluino is not perfect in a χ2

sense. Since the moments are very sensitive to the exis-
tence of a light gluino, a meaningful statistical test could
be performed after a further improvement of the theoret-
ical description.

3.3 Results for fixed αs

To see the effect of the running coupling in the inclusive
energy spectra, let us now consider for comparison the
corresponding model with fixed coupling. Fig. 3 contains
the same data as Fig. 2, but the theoretical predictions
refer now to the MLLA with fixed αs [18]. The curves cor-
respond to three different values of the coupling αs, i.e.,
of the anomalous dimension γ0. For the multiplicity we
take (37) with N part given by (31). Again, the parameter
γ0 cannot be extracted from the study of the mean multi-
plicity alone. Including the other two cumulants, one can
reproduce at best, choosing γ0 = 0.64 (i.e., αs = 0.21), the
multiplicity data and the energy slope of the first moment
ξE , though not its absolute value.

In Fig. 5 we show the predictions of the fixed-αs model
with γ0 = 0.64 (dashed lines), where the absolute normal-
ization is determined again at threshold as in the case
of the running coupling, see (32). We also investigated
whether the agreement with data can be improved if the
normalization at threshold is abandoned and shifted to a
higher energy. To this end we introduced an additional pa-
rameter for each cumulant, which allows for vertical shifts
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Fig. 5. Same data as in Fig. 4, but the curves show the pre-
dictions of the limiting spectrum (i.e. Q0 = Λ) of MLLA with
running αs (solid line), of MLLA with fixed αs (dashed line)
and of the shifted fixed αs model (dotted line); nf = 3 every-
where

of the curves; they have been chosen to fit the experimen-
tal points at

√
s = 44 GeV. In the following we will refer

to this model as the shifted fixed-αs model.
Contrary to the case of running αs, the vertical shifts

can improve the description of the moments for the model
with fixed coupling, but only in a limited range of cms
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energies. Especially, the moments with q ≥ 3 show a rather
different trend with energy in comparison with the data.

In an alternative investigation of the relevance of the
running coupling for the inclusive energy spectra, it has
been proposed to look at the predictions of Monte Carlo
programs with and without running coupling [36]. It was
found that the JETSET Monte Carlo [37] with the stan-
dard hadronization phase but the coupling frozen at the
value of αs = 0.2 in the perturbative phase describes the
experimental data reasonably well throughout the PE-
TRA/PEP energy range and deviations occur only at
higher energies. At first sight this result seems to con-
tradict our findings. Note, however, that in the JETSET
Monte Carlo the perturbative evolution stops at a cut-
off value of about 1 GeV, when the string fragmentation
takes over. In our perturbative approach, we allow on the
contrary the perturbative cascade to evolve down to the
much smaller cut-off Q0 ∼ 270 MeV. It is in this low en-
ergy domain that the variation of the coupling is most pro-
nounced. The running coupling becomes large especially
for small k⊥ so that particles tend to be produced colli-
mated. The perturbative calculations at low scales with
running coupling seem to simulate the production and de-
cay of resonances implemented in Monte Carlo programs
like JETSET. This supports the idea that the parton cas-
cade with running coupling down to small scales is dual
to the cascade with a shorter perturbative phase but with
hadronic resonances in the last stage [18].

3.4 Rescaled cumulants

In addition to the standard moment analysis performed in
the previous subsection, let us also consider the rescaled
cumulants Kq/ξ̄. These quantities become energy inde-
pendent in case of fixed coupling at high energies as fol-
lows directly from (34). In particular for the first three
rescaled cumulants, one has

K2

ξ̄
' γ2

0

2γ̄2
0

1
η + γ̄0

,
K3

ξ̄
' −3

γ2
0

4γ̄4
0

η

η + γ̄0
,

K4

ξ̄
' 3γ2

0

8γ̄6
0

4η2 − γ2
0

η + γ̄0
(42)

Therefore these ratios exhibit more directly the differences
to the case of running coupling. In Fig. 6 the experimental
data on these ratios, as derived from our moment results
in Table 1, are compared to the MLLA predictions with
running αs, then with the fixed αs and the shifted fixed-
αs models. Once again, a good description of data is given
by the MLLA model with running coupling. The fixed-
αs model shows the expected behaviour, i.e., the rescaled
cumulants tend to a constant value at large cms energies;
its predictions lie far away from the experimental data.
The odd moments, which vanish in the DLA, approach
their asymptotic limits more slowly. In the shifted fixed-αs

model previously described, the behaviour of the rescaled
cumulants changes and the predictions become closer to
the data. However, the deviations from the running αs

predictions become obvious for the smaller and also the
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Fig. 6. Rescaled cumulants Kq/ξ̄E as a function of Y =
ln(

√
s/2Q0) for Q0 = 270 MeV. Data as in Fig. 4 are compared

with the corresponding predictions of the limiting spectrum of
MLLA with running αs (solid line). The dashed curve shows
the predictions of the model with fixed αs (γ0 = 0.64); in this
case, the rescaled cumulants approach constant values at high
energies (0.534, 0.344, 0.528 respectively, with the chosen value
of γ0). Predictions of the shifted fixed αs model are also shown
(dotted line)

very high energies with Y > 6, where the ratios reflect the
different asymptotic trends. For example, the ratio K4/ξ̄
changes curvature when going from fixed to running αs.
Data at these higher energies are becoming now available
at the TEVATRON[16] and could give new information.

4 Analysis of the shape

4.1 Energy evolution of the shape

The moment analysis has selected the solution with sim-
ilar values for the parameters Q0 and Λ; let us now con-
sider the predictions for the shape of the spectrum itself.
Figure 7 shows the inclusive energy spectra Edn/dp as a
function of ξE , extracted from experimental data [24, 26,
10–12] using the fitted cut-off parameter Q0 = 270 MeV as
the effective mass in the calculation of the particle energy.
The curves show the predictions of the limiting spectrum
with the same value of the Q0 parameter. The normaliza-
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E2 = p2 + Q2

0, Q0 = 270 MeV at various cms energies with
predictions of the limiting spectrum (Kh fixed at each energy
from the fit of (37) and (29)). Each curve is shifted up by 0.5
for clarity

tion has been fixed by choosing the integral of the spec-
trum to be equal to the average multiplicity according to
the formula (37), the respective numbers are also given in
Table 1. The fit describes well the main features of the
data in the wide range of cms energies 7 ≤ √

s ≤ 140
GeV, especially in the region with ξE smaller than the
peak position.

Some deviations of the fitted curves from the data can
be seen for larger ξE ’s, i.e., for smaller particle energies.
At low cms energies the curves fall somewhat above the
data near the peak position and below the data near the
kinematic limit (ξ → Y ). This behaviour may be related to
the fact that the limiting spectrum approaches a constant
value and not zero for ξ → Y , as expected for the exact
solution of the evolution equations (10) or (12).

An iterative approximate solution of the MLLA equa-
tions which is valid in the soft region and goes to zero for
ξ → Y has been given in [23]:

D(ξ, Y, λ)MLLA =

D(ξ, Y, λ)|DLA exp
[
−a

∫ Y

ξ

γ2
0(y)

4NC
dy

]
(43)
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Fig. 8. Comparison of inclusive spectra Edn/dp vs. ξE , with
E2 = p2 + Q2

0, Q0 = 270 MeV at various cms energies with
predictions of the MLLA iterative solution (43) (Q0 = 270
MeV, λ = 0.01, Kh = 0.45). Data and predictions for particle
energies E ≤ 1 GeV are shown

where

D(ξ, Y, λ)|DLA =
4CA

b
ln
(

1 +
Y − ξ

λ

)
(44)

×
[
1 +

4NC

b

∫ Y −ξ

0 dτ ln(1 + τ
λ ) ln(1 + ξ

τ+λ )

ln(1 + Y −ξ
λ )

]
+ . . .

In Fig. 8 the theoretical predictions from this approxima-
tion are compared with the same data as in Fig. 7 for low
particle energies E < 1 GeV. A rather good description of
data in the soft region is obtained in this way, in agreement
with previous findings on the quantity Edn/d3p [23].

4.2 High energy limit of the spectrum and ζ-scaling

In QCD the asymptotic behaviour of the soft produc-
tion phenomena can be derived within the DLA, which
takes into account the leading collinear and soft singulari-
ties originating from the Bremsstrahlung processes. A well
known scaling law of this type is the KNO scaling [40–42]
of the particle multiplicity distribution for rescaled prob-
abilities and multiplicities.

Within QCD the momentum spectra do not scale
asymptotically in the Bjorken or Feynman variables x =
p/P because of the Bremsstrahlung emissions with large
transverse momenta, as is well known. Instead, they ap-
proach a finite scaling limit in certain rescaled logarithmic
variables. This proposal, put forward already more than
ten years ago [20], has never been studied since. A scal-
ing behaviour of similar type for angular correlations has
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been recently proposed [43] and found some support by
experimental data [44].

The asymptotic behaviour of the inclusive energy spec-
trum can be derived from the DLA evolution equation, i.e.
(12) with a = 0. One finds a scaling law in the rescaled
logarithmic variable ζ for the rescaled spectrum [20]

lnD(ξ, Y )
lnN (Y )

= F (ζ) , ζ =
ξ

Y
(45)

independent of Y . The logarithmic variables naturally oc-
cur in the asymptotic limit as they absorb the Bremsstrah-
lung singularities in the evolution equation (6).

The scaling function F (ζ) takes in DLA the following
form [20]:

F (ζ) =
µ

sinhµ
with 2ζ − 1 =

sinh 2µ − 2µ

2 sinh2 µ
(46)

The function F (ζ) is symmetric around ζ = 1/2, where it
has a maximum of 1, and it goes as

√
ζ ln 1/ζ for ζ → 0.

In the MLLA model with fixed coupling explicit analytical
expressions for the spectrum and for the average multiplic-
ity are available [18] and the scaling function is given by
F (ζ) = 2

√
ζ(1 − ζ).

For further illustration of the scaling law (45), we recall
the Gaussian approximation of the DLA [5, 6]

D(ξ, Y ) ' N (Y )
((Y + λ)3/2 − λ3/2)

1
2

× exp


−

3
√

4NC

b (ξ − Y
2 )2

(Y + λ)3/2 − λ3/2


 (47)

As the multiplicity N (Y ) ∼ exp(
√

16NC(Y + λ)/b) at
high energies, one finds in exponential accuracy

F (ζ) ' 1 − 3
2
(ζ − 1

2
)2 (48)

which depends only on ζ and not on Y . In case of fixed
αs the Gaussian is slightly narrower F (ζ) ' 1−2(ζ − 1

2 )2.
The DLA asymptotic scaling functions both for running
and fixed αs and their Gaussian approximations are shown
in Fig. 9. We notice that the two asymptotic curves for
running and fixed αs do not differ very much quantita-
tively in the region around the maximum ζ ∼ 1/2, but
they do in the soft region, where the effect of the run-
ning of αs becomes relevant [23] and the corresponding
curve shows indeed a steeper slope than the fixed-αs one.
Notice also that the Gaussian approximation considerably
deteriorates towards the limits ζ ∼ 0 and ζ ∼ 1.

It should be noted that only the transformed observ-
able (45) and not the spectrum D(ζ, Y ) itself approaches
a finite limit. The spectrum D(ζ, Y ) can be approximated
by a Gaussian in ζ with width σ2

ζ ∼ 1/
√

Y and therefore
one finds asymptotically for D and its moments

D(ζ, Y ) → δ(ζ − 1
2
) , < ζq >→ 1

2q
(49)

F (�)

�

DLA running �
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Fig. 9. The DLA asymptotic prediction (46) for the scal-
ing function F (ζ), the prediction of the Gaussian Approxima-
tion (48) and the corresponding predictions with fixed αs in
comparison

The MLLA results for the moments (63)–(66) indeed ap-
proach this limit.

In Fig. 10 we show the experimental data for the ob-
servable (45) at three different cms energies [10, 26, 14].
In this figure ξ is chosen to be ξp and Y = ln(

√
s/2Q0)

with Q0 = 270 MeV. Experimental data for the average
charged multiplicity have been taken from [45, 46, 14].
Figure 11 shows the same observable, but this time as a
function of ξ = ξE , where the energy is calculated with the
effective mass Q0 = 270 MeV. In this way, experimental
spectra have a common kinematical boundary at ζE = 1
and can be compared with the theoretical predictions as
in Fig. 7. Figure 11 also shows the theoretical predictions
of the Limiting Spectrum normalized by the average mul-
tiplicity (37) and (29) at the same cms energies of the
experimental data, as well as the asymptotic DLA predic-
tion of (46).

One can see from these figures that the original energy
evolution of the spectrum visible in Fig. 7 is largely re-
moved if the scaling variables (45) are used. Some scaling
violation remains, especially in the small ζ region. The
limiting spectrum reproduces well the small scaling vio-
lations shown by the data. It approaches the asymptotic
limit very slowly and only at unphysically large energies2.
The data at the present cms energies lie far away from the
asymptotic DLA curve in the small ζ domain; however,
it is interesting to notice that the data for soft particles
(p ∼ 0, ξ ∼ Y , ζ ∼ 1) are already close to the asymptotic
limit. This result lends further support to the idea that
very soft particles are basically determined by the nearby

2 For instance the scaling function F (ζ) at ζ = 1/2, whose
asymptotic value is 1, reaches 0.8 at Y ∼ 68 (

√
s ∼ 1028 GeV)

and 0.9 at Y ∼ 460 (
√

s ∼ 10200 GeV)
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Fig. 10. Test of ζ-scaling for the momen-
tum spectra at 14, 58 and 130 GeV [10, 26
14] with average charged multiplicities taken
from [45, 46, 14]

ln
dn

d�E

ln N ch

�E � �E

Y

� 14 GeV

4 58 GeV

� 133 GeV

DLA

p
s

-2

-1.5

-1

-0.5

0

0.5

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fig. 11. Test of ζ-scaling for the energy
spectra. Data as in Fig. 10, but the particle
energy is calculated using the mass Q0 = 270
MeV, in comparison with theoretical predic-
tions from the limiting spectrum (Q0 = 270
MeV) normalized to the predicted average
multiplicity according to (37) and (29). The
DLA prediction (46) at asymptotic cms en-
ergy is also shown
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��

Y

Fig. 12. Maximum of the rescaled inclusive momentum dis-
tribution ζ∗ = ξ∗/Y as a function of Y = ln

√
s

2Q0
; comparison

between experimental data at various cms energies [10–14, 24–
29] and theoretical prediction in MLLA, numerically extracted
from the shape of the limiting spectrum (solid line) for the
cut-off parameter Q0 = Λ = 270 MeV [15]. Crosses mark the
predictions at the cms energies 200 GeV and 500 GeV. The
asymptotical DLA result ζ∗ = 1

2 is also shown (dashed line)

Bremsstrahlung singularities and not affected by the non
singular terms in the splitting functions taken into account
in MLLA nor by the recoil effects (see [23] for a previous
discussion of this point).

The energy dependence of the position of the maxi-
mum of the ζ distribution, ζ∗, is shown in Fig. 12 up to
LEP-1.5 energies. Also in this case, the data closely follow
the prediction of the limiting spectrum, which very slowly
approaches the asymptotic DLA limit ζ∗ = 1

2 .
One concludes that the data show an approximate scal-

ing law in the presently available energy range. However,
this scaling is preasymptotic, i.e., the asymptotic shape of
the distribution is quite different from the one observed at
present energies. Similar results on the existence of a large
preasymptotic scaling regime have also been predicted for
the multiplicity scaling (KNO) and its violation [47,48]; in
this case significant deviations from scaling are expected
only around

√
s ∼ 1 TeV [49].

5 Conclusions

The perturbative QCD approach has been shown to de-
scribe well experimental data on charged particle inclusive
energy spectra in e+e− annihilation. The new features of
the moment analysis of the spectrum have been discussed.

The first determination of the two independent essen-
tial parameters of the theory has been performed, whereby
the best description of the data is obtained for Q0 ' Λ '
270 MeV with an uncertainty of about 20 MeV. The de-
pendence of the moments on the initial conditions has
been studied; if one takes the nonperturbative initial con-
dition of the perturbative QCD evolution at the threshold
of the process, a good description of the moments also
in their absolute normalization is obtained in the full en-
ergy range available including the low energies of a few

GeV. The sensitivity of the moments to the running of
the coupling has been established by comparing the pre-
dictions of the full model with the predictions of a model
with frozen coupling. The effect of heavy quark thresholds
in the running of the coupling has also been discussed; a
good phenomenological description of the data at present
energies is obtained already by including only three active
flavours. The moments are very sensitive to the presence
of a light gluino with mass around 1 GeV, but there is no
evidence for the type of effect expected.

The inclusive energy spectra themselves have also been
studied. The limiting spectrum with Q0 = Λ is found to
provide a good overall description of the data in a large
cms energy range. An improvement in the soft region can
be obtained by applying an approximation which takes
into account the boundary conditions at ξ = Y explicitly.

Data in the presently available cms energy range sup-
port an approximate scaling law, the ζ-scaling, predicted
at asymptotic energies. Some violations of the scaling be-
haviour in this preasymptotic energy range are observed,
as expected from the MLLA. The data in the soft energy
region (ζ <∼ 1) at available energies are already close to
the asymptotic predictions.

There are some simplifications both in the phenomeno-
logical analysis (for example, neglect of difference in light
and heavy quark fragmentation) and the theoretical de-
scription. The respective improvements would yield a more
stringent test of the theoretical scheme and possibly a
quantitative improvement of the fit to the data. As the
main result of the present analysis we consider the good
description of the data down to low scales – even if not en-
tirely quantitatively everywhere – in agreement with QCD
with running αs and the LPHD picture.

A Explicit formulae for moments

A.1 Moments in the general case

The functions entering (27) are defined as follows [17]:
N = N1 + N2 is composed of two terms increasing and
decreasing with energy, respectively,

N1 = Γ (B)Γ (1 − B)z1

(
z2

z1

)B

IB+1(z1)I−B(z2) (50)

N2 = Γ (−B)Γ (B + 1)z1

(
z2

z1

)B

I−B−1(z1)IB(z2)

(51)

z1 =
√

16Nc(Y + λ)/b; z2 =
√

16Ncλ/b.

The two terms build up the total multiplicity

N = z1

(
z2

z1

)B

[IB+1(z1)KB(z2) + KB+1(z)IB(z2)]

(52)
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The functions L
(q)
k and R

(q)
k in (27) are computed from

L
(q)
k = Dq−k(B + 1, B + 2, z1)Dk(−B, 1 − B, z2)

(53)

R
(q)
k = Dq−k(0,−B, z1)Dk(0, B + 1, z2) (54)

Dk(g, c, z) = P
(q)
0 (g, c, z) +

2
z

Ic(z)
Ic−1(z)

P
(q)
1 (g, c, z)

where P
(q)
i are the polynomials

P
(q)
0 (g, c, z) =

q−1∑
k=0

α
(q)
q−k

(
2
z

)2k

,

P
(q)
1 (g, c, z) =

q−1∑
k=0

β
(q)
q−k

(
2
z

)2k

. (55)

The coefficients of highest order are given by

α(q)
q =

1
2q

, β(q)
q =

q

2q

(
B +

q − 1
3

)
(56)

whereas in lower order they can be found by solving a q×q
linear system of equations. For the first four moments one
finds explicitly ((a)n ≡ Γ (a + n)/Γ (a) = a(a + 1) . . . (a +
n − 1)):

β
(q)
1 =

Φ
(q)
1−c

1 − c
, β

(q)
2 =

Φ
(q)
2−c

(c − 2)2
− Φ

(q)
1−c

(c − 1)2

β
(q)
3 = −1

2
Φ

(q)
3−c

(c − 3)3
+

Φ
(q)
2−c

(c − 2)3
− 1

2
Φ

(q)
1−c

(c − 1)3
(57)

α
(q)
1 =

Φ
(q)
1−c

(c − 1)2
, α

(q)
2 = − Φ

(q)
2−c

(c − 2)3
− Φ

(q)
1−c

(c − 1)3

α
(q)
3 =

1
2

Φ
(q)
3−c

(c − 3)4
− Φ

(q)
2−c

(c − 2)4
+

1
2

Φ
(q)
1−c

(c − 1)4
(58)

in terms of the expressions

Φ(1) =
1
2
(n − 1)2 + gn (59)

Φ(2) =
1
4
(n − 2)3 + (g +

2
3
)(n − 2)3 + (g)2(n − 1)2 (60)

Φ(3) =
1
8
(n − 5)6 + (

3
4
g + 1)(n − 4)5

+ (
3
2
g2 +

7
2
g +

3
2
)(n − 3)4 + (g)3(n − 2)3 (61)

Φ(4) =
1
16

(n − 7)8 + (
1
2
g + 1)(n − 6)7

+ (
3
2
g2 +

11
2

g +
13
3

)(n − 5)6 (62)

+ (2g3 + 10g2 + 14g +
24
5

)(n − 4)5 + (n − 3)4.

A.2 Limiting spectrum

In the special case Q0 = Λ we find [17] for the moments
q ≤ 4 explicitly:

ξ̄

Y
=

1
2

+
B

z

IB+2(z)
IB+1(z)

(63)

< ξ2 >

Y 2 =
1
4

+
B(B + 1

3 )
z2 (64)

+
(B + 1

3 )
z

(
1 − 2B(B + 2)

z2

)
IB+2(z)
IB+1(z)

< ξ3 >

Y 3 =
1
8

+
3B(B + 1)

2z2 − 2B2(B + 1)(B + 3)
z4 +

+
2
z

[
3B + 2

8
− B(B + 1)(B + 3)

z2 +
4B(B)4

z4

]

×IB+2(z)
IB+1(z)

(65)

and

< ξ4 >

Y 4 =
1
16

+ α
(4)
3

(
2
z

)2

+ α
(4)
2

(
2
z

)4

(66)

+α
(4)
1

(
2
z

)6

+

+
2
z

[
B + 1

4
+ β

(4)
3

(
2
z

)2

+ β
(4)
2

(
2
z

)4

+β
(4)
1

(
2
z

)6
]

IB+2(z)
IB+1(z)

where

α
(4)
3 = 10

Φ
(4)
−B

(B)5
− 1

4
B(B + 1)(B + 3)

B − 1

α
(4)
2 = −3

Φ
(4)
−B

(B)4
, α

(4)
1 =

Φ
(4)
−B

(B + 1)2
(67)

and

β
(4)
3 = −6

Φ
(4)
−B

(B − 1)5
+

1
4

(B)4
B − 1

β
(4)
2 = 2

Φ
(4)
−B

(B)3
, β

(4)
1 = − Φ

(4)
−B

(B + 1)
(68)

and

Φ
(4)
−B =

1
16

B8 +
3
4
B7 + 3.45833B6 + 7.7B5 (69)

+8.39583B4 +
15
4

B3 +
1
12

B2 − 1
5
B.
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A.3 Fixed coupling

The first coefficients Aq, Bq in (32) read (here ρ ≡ η/γ̄0)

A1 = (ρ2 + 1)
Y

2
, B1 = (−ρ2 − 1)

1
2γ̄0

+ ρY ; (70)

A2 = (−3ρ3 − ρ)
Y

4γ̄0
+ (3ρ2 + 1)

Y 2

4
, (71)

B2 = (3ρ3 + ρ)
1

4γ̄2
0

+ (−3ρ2 − 1)
Y

4γ̄0

+(ρ3 + 3ρ)
Y 2

4
;

A3 = (15ρ4 − 3)
Y

8γ̄2
0

− 12ρ3 Y 2

8γ̄0

+(ρ4 + 6ρ2 + 1)
Y 3

8
, (72)

B3 = (−15ρ4 + 3)
1

8γ̄3
0

+ 12ρ3 Y

8γ̄2
0

+(−6ρ4 − 6ρ2)
Y 2

8γ̄0
+ (4ρ3 + 4ρ)

Y 3

8
;

A4 = (−105ρ5 + 30ρ3 + 27ρ)
Y

16γ̄3
0

+(75ρ4 − 18ρ2 − 9)
Y 2

16γ̄2
0

+2(−5ρ5 − 14ρ3 + 3ρ)
Y 3

16γ̄0

+(5ρ4 + 10ρ2 + 1)
Y 4

16
, (73)

B4 = (105ρ5 − 30ρ3 − 27ρ)
1

16γ̄4
0

+(−75ρ4 + 18ρ2 + 9)
Y

16γ̄3
0

+(45ρ5 + 18ρ3 − 15ρ)
Y 2

16γ̄2
0

+2(−15ρ4 − 2ρ2 + 1)
Y 3

16γ̄0

+(ρ5 + 10ρ3 + 5ρ)
Y 4

16
.
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